
Immunometabolic Reprogramming: A 
Comprehensive Analysis of 
Phytochemical Interventions for 
Reversing Viral-Induced Immune 
Dysregulation and Epigenetic Scarring 
1. Introduction: The Paradigm of Viral 
Immunometabolic Hijacking 
The interaction between pathogenic viruses, particularly severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), and the host immune system is increasingly understood not 
merely as a battle of antigen recognition and antibody production, but as a profound struggle 
for metabolic control. Contemporary research has established that viruses function as 
obligate intracellular metabolic engineers, actively reprogramming host cellular metabolism to 
create an environment conducive to viral replication. This metabolic hijacking often persists 
long after the acute infection has cleared, leading to states of chronic immune dysfunction, 
T-cell exhaustion, and the constellation of debilitating sequelae known as "Long COVID".1 This 
report provides an exhaustive, expert-level analysis of specific phytochemicals and herbal 
interventions capable of countering or reversing these specific metabolic and epigenetic 
reprogramming events. 

Viral pathogens force host cells—particularly immune cells like monocytes, macrophages, and 
T lymphocytes—to abandon efficient oxidative phosphorylation (OXPHOS) in favor of aerobic 
glycolysis, a shift classically known in oncology as the "Warburg effect".1 This metabolic shift 
provides the rapid energy (ATP) and biosynthetic carbon intermediates required for viral 
genome replication and capsid formation, but it simultaneously drives a hyper-inflammatory 
state characterized by the "cytokine storm." Furthermore, viruses induce the systematic 
depletion of critical amino acids such as arginine and tryptophan, leading to T-cell starvation, 
metabolic arrest, and functional exhaustion.1 They hijack lipid metabolism to form viral 
envelopes and specialized replication organelles derived from the host's lipid rafts.5 Perhaps 
most critically, severe infections leave "epigenetic scars" on the chromatin of immune cells, 
locking them into a state of exhaustion, senescence, or tolerance that prevents the return to 
immunological homeostasis.7 

The following analysis details the capacity of specific herbs and bioactive 
compounds—including Curcuma longa (Curcumin), Scutellaria baicalensis (Baicalin), 
Andrographis paniculata (Andrographolide), Panax ginseng, Echinacea purpurea, Zingiber 



officinale (Ginger), Glycyrrhiza glabra (Licorice), Momordica charantia (Bitter Melon), Berberis 
species (Berberine), Polygonum cuspidatum (Resveratrol), and Rhodiola rosea—to target 
these precise metabolic checkpoints. By modulating critical signaling axes such as 
mTOR/HIF-1$\alpha$, enhancing mitochondrial biogenesis via SIRT1/PGC-1$\alpha$, 
regulating epigenetic enzymes like DNA methyltransferases (DNMTs) and histone 
deacetylases (HDACs), and clearing uremic toxins like indoxyl sulfate, these agents offer a 
mechanism-based approach to reversing immune reprogramming. 

2. Reversing Glycolytic Reprogramming: Countering 
the Viral Warburg Effect 
The "Warburg effect," characterized by a shift from mitochondrial respiration to aerobic 
glycolysis even in the presence of sufficient oxygen, is a hallmark of activated 
pro-inflammatory immune cells (M1 macrophages, effector T cells) and virus-infected 
epithelial cells. Viruses, including SARS-CoV-2, Influenza, and Epstein-Barr Virus (EBV), exploit 
this shift to generate the ATP and carbon substrates necessary for rapid replication.1 This 
metabolic state is sustained by the upregulation of Hypoxia-Inducible Factor 1-alpha 
(HIF-1$\alpha$) and the mammalian target of rapamycin (mTOR) pathway, effectively locking 
the cell in a sugar-burning, inflammatory mode. Reversing this glycolytic lock is essential for 
dampening cytokine storms, starving the virus, and restoring metabolic flexibility to the host. 

2.1 Curcumin: The mTOR/HIF-1$\alpha$ Axis Inhibitor 
Curcumin, a hydrophobic polyphenol derived from the rhizome of Curcuma longa (Turmeric), 
has emerged as a potent inhibitor of the glycolytic flux utilized by viruses and cancer cells. 
The mechanism of action is multifaceted but centers on the downregulation of the 
mTOR/HIF-1$\alpha$ signaling axis, which serves as the "master switch" for this metabolic 
reprogramming. 

Mechanistic Insight: 
Research indicates that curcumin directly inhibits the glycolytic flux by downregulating the 
expression of key glycolytic enzymes, including Hexokinase 2 (HK2) and Pyruvate Kinase M2 
(PKM2).3 PKM2 is a critical rate-limiting enzyme in glycolysis; its upregulation supports the 
"Warburg effect" by creating a bottleneck that diverts glycolytic intermediates toward 
biosynthetic pathways rather than oxidative phosphorylation. Curcumin suppresses PKM2 
expression via the inhibition of the mTOR/HIF-1$\alpha$ axis.3 By blocking mTOR 
phosphorylation, curcumin prevents the downstream translation and stabilization of 
HIF-1$\alpha$, which acts as a master transcriptional regulator of glycolytic genes (including 
GLUT1, LDHA, and HK2). 
Furthermore, curcumin has been shown to reduce glucose uptake and lactate production in 
cellular models, effectively starving the viral replication machinery that depends on this glut of 



energy and carbon.10 In the context of viral infection, where HIF-1$\alpha$ stabilizes to 
promote inflammation (specifically IL-1$\beta$ production via the NLRP3 inflammasome), 
curcumin’s ability to destabilize HIF-1$\alpha$ serves a dual purpose: it restricts viral energy 
supply and dampens the hyper-inflammatory response associated with the glycolytic M1 
macrophage phenotype.13 This restoration of metabolic balance is crucial for allowing immune 
cells to transition from a pro-inflammatory state to a resolution phase. 

Therapeutic Implication: 
Curcumin acts as a metabolic "brake," forcing cells to exit the hyper-glycolytic state. This is 
particularly relevant for reversing the metabolic reprogramming seen in "Long COVID," where 
persistent inflammation is fueled by sustained glycolysis in myeloid cells. By inhibiting the 
mTOR/HIF-1$\alpha$ axis, curcumin re-enables mitochondrial respiration, reducing the 
production of lactate and inflammatory cytokines. 
2.2 Baicalin: Modulation of Glycolytic Enzymes and NETosis 
Baicalin, a flavone glycoside isolated from the roots of Scutellaria baicalensis (Chinese 
Skullcap), exhibits a distinct capability to target viral-induced metabolic shifts, particularly 
within the pulmonary tissue. It is a key pharmacologically active component of the Lianhua 
Qingwen formula, which has been extensively used in the clinical treatment of COVID-19.1 

Mechanistic Insight: 
Baicalin exerts its effects by inhibiting the HIF-1$\alpha$ signaling pathway, similar to 
curcumin, but with specific efficacy in lung tissue and alveolar macrophages. In models of 
acute lung injury (ALI) and viral infection, baicalin significantly inhibits the protein levels of 
HIF-1$\alpha$, thereby suppressing glycolysis-dependent inflammatory responses.14 
Specifically, baicalin downregulates the expression of glycolysis-related catalytic enzymes 
and prevents the metabolic burst associated with cytokine storms.14 
Crucially, recent research highlights baicalin's ability to inhibit the formation of Neutrophil 
Extracellular Traps (NETs) by modulating glycolysis in neutrophils.15 NETosis is a cell death 
program that releases DNA webs to trap pathogens; however, in respiratory viral infections 
like COVID-19, excessive NETosis is driven by a glycolytic burst and contributes to severe 
tissue damage, thrombosis, and fibrosis. By suppressing the glycolytic fuel for NETosis, 
baicalin reduces this immunopathological damage. Additionally, baicalin has been shown to 
inhibit viral replication by targeting the influenza virus M1 protein and downregulating viral 
nucleoprotein (NP) expression, actions that are likely reinforced by the deprivation of host 
metabolic resources.16 

Therapeutic Implication: 
Baicalin serves as a targeted intervention for respiratory inflammation driven by metabolic 
dysregulation. Its ability to dampen HIF-1$\alpha$ and suppress glycolysis-dependent 
NETosis makes it a critical agent for preventing the progression of viral infections into severe 
inflammatory states such as Acute Respiratory Distress Syndrome (ARDS) and pulmonary 
fibrosis. 



2.3 Andrographolide: The Glucose Uptake Inhibitor 
Andrographolide, a diterpenoid lactone derived from Andrographis paniculata, functions as a 
potent metabolic modulator by directly influencing glucose transport and utilization, 
effectively enforcing a metabolic blockade against viral replication. 

Mechanistic Insight: 
Andrographolide reduces blood glucose levels and prevents viruses from hijacking host 
glucose for replication.1 Mechanistically, it suppresses aerobic glycolysis by inhibiting the 
expression of Pyruvate Dehydrogenase Kinase 1 (PDK1).18 Under normal conditions, Pyruvate 
Dehydrogenase Complex (PDC) converts pyruvate into acetyl-CoA for entry into the 
mitochondrial TCA cycle. However, in the Warburg effect, PDK1 phosphorylates and 
inactivates PDC, forcing pyruvate to be converted into lactate. By inhibiting PDK1, 
andrographolide restores the activity of PDC, re-routing pyruvate into the mitochondria for 
oxidative phosphorylation and effectively reversing the Warburg effect.18 
Additionally, andrographolide has been shown to inhibit the PI3K/Akt/mTOR pathway, a central 
regulator of glucose metabolism often activated by viruses to enhance nutrient uptake.20 By 
blocking this pathway, andrographolide limits the expression of Glucose Transporter 1 
(GLUT1), thereby reducing the intracellular glucose pool available for viral replication and 
glycolysis-driven inflammation. This dual action—restoring mitochondrial flux via PDK1 
inhibition and reducing glucose uptake via Akt inhibition—constitutes a robust metabolic 
counter-measure. 

Therapeutic Implication: 
Andrographolide acts as a metabolic "gatekeeper," restricting the fuel supply for both viral 
replication and inflammatory immune expansion. Its ability to enforce mitochondrial 
respiration over glycolysis makes it a valuable tool for restoring metabolic homeostasis in 
post-viral fatigue syndromes where glycolysis often remains aberrantly elevated despite the 
clearance of the pathogen. 
2.4 Shikonin and Emodin: Targeting PKM2 and Viral Attachment 
Shikonin: 
Derived from Lithospermum erythrorhizon (Gromwell root), Shikonin is a specific 
small-molecule inhibitor of Pyruvate Kinase M2 (PKM2).22 PKM2 is the embryonic isoform of 
pyruvate kinase and is crucial for the Warburg effect; its upregulation allows for the 
accumulation of glycolytic intermediates for biosynthesis. Inhibition of PKM2 by Shikonin 
significantly reduces lactate production, glucose uptake, and ATP generation in glycolytic 
cells.22 This action starves the virus of energy and biosynthetic precursors and has been 
shown to inhibit the replication of Enterovirus 71 (EV71) by suppressing the NF-$\kappa$B 
signaling pathway.24 
Emodin: 
Found in Rheum officinale (Rhubarb) and Polygonum multiflorum, Emodin targets the 
interaction between the SARS-CoV-2 Spike protein and the host ACE2 receptor, blocking viral 
entry.25 Beyond viral entry, Emodin disrupts the Warburg effect by inhibiting the PI3K/Akt and 



MAPK/ERK signaling pathways, which are essential for sustaining aerobic glycolysis during 
viral infection.27 The suppression of these pathways not only halts the metabolic 
reprogramming required for viral replication but also reduces the secretion of 
pro-inflammatory cytokines like IL-1$\beta$ and TNF-$\alpha$.29 
2.5 Berberine: The Metabolic Master Switch 
Berberine, an isoquinoline alkaloid found in Coptis chinensis and Berberis species, acts as a 
profound metabolic regulator, primarily through the activation of Adenosine 
Monophosphate-activated Protein Kinase (AMPK). 

Mechanistic Insight: 
AMPK is the cellular "energy sensor" that, when activated, shuts down anabolic processes 
(like lipid and protein synthesis required for viral replication) and stimulates catabolic 
processes (like fatty acid oxidation and mitochondrial respiration). Berberine activates AMPK, 
which subsequently inhibits mTOR signaling.30 This effectively reverses the Warburg effect by 
downregulating the Akt/mTOR/GLUT1 signaling pathway, reducing glucose uptake and lactate 
production.31 
Furthermore, berberine has been shown to increase the expression of Ten-Eleven 
Translocation 3 (TET3), a DNA demethylase. TET3 promotes the expression of miR-145, which 
in turn suppresses Hexokinase 2 (HK2), a key glycolytic enzyme.33 This epigenetic-metabolic 
axis demonstrates that berberine operates at multiple levels to dismantle the glycolytic 
program favored by viruses. 

Table 1: Phytochemical Reversal of Glycolytic Reprogramming 

 

Compound Source Herb Primary Metabolic 
Target 

Mechanism of 
Action in 
Reprogramming 
Reversal 

Curcumin Curcuma longa mTOR/HIF-1$\alpha
$ Axis 

Downregulates 
HK2/PKM2; blocks 
glycolytic flux and 
destabilizes 
HIF-1$\alpha$. 3 

Baicalin Scutellaria 
baicalensis 

HIF-1$\alpha$ / 
Glycolysis 

Inhibits 
glycolysis-depende
nt inflammation and 
NETosis in lung 
tissue. 14 



Andrographolide Andrographis 
paniculata 

PDK1 / PI3K/Akt Inhibits PDK1 to 
restore 
mitochondrial 
respiration 
(OXPHOS); reduces 
GLUT1. 18 

Shikonin Lithospermum 
erythrorhizon 

Pyruvate Kinase M2 
(PKM2) 

Direct inhibition of 
PKM2; reduces 
lactate production 
and biosynthetic 
flux. 22 

Emodin Rheum officinale PI3K/Akt / 
Spike-ACE2 

Blocks viral entry 
and downstream 
glycolytic signaling 
pathways. 25 

Berberine Berberis spp. / 
Coptis 

AMPK / TET3 Activates AMPK to 
inhibit mTOR; 
epigenetically 
suppresses HK2 via 
TET3/miR-145. 31 

3. Restoring Amino Acid Metabolism: Countering 
T-Cell Starvation 
Viral infections induce a state of "amino acid starvation" within the microenvironment, 
specifically depleting L-Arginine and L-Tryptophan. This depletion is a primary driver of T-cell 
exhaustion, immune tolerance, and the failure to clear chronic infections. 

3.1 Ginseng: Modulating Arginine Metabolism and Reversing T-Cell 
Exhaustion 
L-Arginine is critical for T-cell proliferation and the functional expression of the T-cell receptor 
(TCR) $\zeta$-chain (CD3$\zeta$). In chronic infections and cancer, Myeloid-Derived 
Suppressor Cells (MDSCs) and M2 macrophages express high levels of Arginase 1 (ARG1), an 
enzyme that hydrolyzes arginine into ornithine and urea, thereby depleting the 
microenvironment of this essential nutrient.1 

Mechanistic Insight: 



Ginseng (Panax ginseng) and its bioactive components (ginsenosides) have been shown to 
reprogram macrophages and MDSCs to reduce ARG1 production.4 Ginseng-derived 
nanoparticles (GDNPs) can shift the polarization of tumor-associated macrophages (TAMs) 
from an immunosuppressive M2-like (arginase-producing) phenotype to an 
immunostimulatory M1-like phenotype. By inhibiting ARG1 expression, ginseng restores local 
levels of L-Arginine. 
This restoration of arginine availability has profound downstream effects on T cells. It 
reactivates the mTOR-T-bet signaling axis within T cells, which is essential for effector 
function, proliferation, and the prevention of exhaustion.4 T-bet is a master transcription 
factor for Th1 immunity and cytotoxic CD8+ T cell function. Therefore, ginseng acts as a 
metabolic "rescuer," preventing the down-regulation of the CD3$\zeta$ chain and ensuring 
that T cells remain functional and responsive to viral antigens. 

3.2 Echinacea: The Arginase Paradox and Immunometabolic 
Resolution 
Echinacea purpurea presents a complex interaction with arginine metabolism that is often 
misunderstood. While it is widely recognized as an immune stimulant, its effects on arginine 
metabolism are nuanced and context-dependent, serving to resolve inflammation rather than 
merely fuel it. 

Mechanistic Insight: 
Evidence suggests that Echinacea extracts can increase arginase activity in macrophages, 
promoting an anti-inflammatory M2 phenotype.37 On the surface, this appears contradictory 
to the goal of preserving arginine for T cells (as discussed with Ginseng). However, this action 
is part of Echinacea's ability to facilitate the resolution of inflammation and prevent tissue 
damage caused by excessive nitric oxide (NO) production. 
In the acute phase of infection, Inducible Nitric Oxide Synthase (iNOS) consumes arginine to 
produce NO, a potent antimicrobial but also a tissue-damaging free radical. By shifting the 
enzymatic balance from iNOS (pro-inflammatory) to Arginase (anti-inflammatory, producing 
ornithine for collagen synthesis and tissue repair), Echinacea prevents the immunopathology 
of "cytokine storms".37 This is a form of immune reprogramming that transitions the host from 
a destructive inflammatory phase to a repair phase. Simultaneously, Echinacea modulates 
non-specific immune responses and restores T-cell function through other pathways, 
potentially by enhancing the proliferation of T cells even in arginine-depleted environments via 
activation of cannabinoid receptor 2 (CB2), which it binds to with high affinity.37 

Therapeutic Implication: 
Echinacea functions as an immunometabolic regulator. It is particularly valuable in the later 
stages of viral infection or in "Long COVID," where persistent iNOS activity contributes to 
nitrosative stress and tissue injury. Its ability to promote arginase activity supports tissue 
healing and fibrosis resolution. 



3.3 Ginger: The Tryptophan-Kynurenine Axis and Neuroprotection 
The enzyme Indoleamine 2,3-dioxygenase (IDO) degrades L-Tryptophan into Kynurenine. 
Viruses induce IDO expression primarily via Interferon-gamma (IFN-$\gamma$) signaling. The 
depletion of tryptophan starves T cells (inducing cell cycle arrest), while the accumulation of 
kynurenine metabolites (such as quinolinic acid) is neurotoxic and promotes the differentiation 
of immunosuppressive regulatory T cells (Tregs).1 

Mechanistic Insight: 
Ginger (Zingiber officinale), specifically its active pungent component 6-gingerol, regulates 
the balance of Th17/Treg cells and dampens the inflammatory drive that upregulates IDO.1 By 
inhibiting the production of IFN-$\gamma$ and other pro-inflammatory cytokines that trigger 
IDO expression, ginger indirectly preserves systemic tryptophan levels.43 
Furthermore, 6-gingerol has been shown to inhibit the NLRP3 inflammasome, a key driver of 
neuroinflammation that is often exacerbated by kynurenine pathway metabolites.44 By 
reducing inflammasome activation, ginger interrupts the feed-forward loop where 
inflammation begets metabolic dysregulation. Recent studies also indicate that ginger 
components can modulate the activity of Tryptophan 2,3-dioxygenase (TDO), another enzyme 
responsible for tryptophan degradation, further conserving this amino acid for anabolic 
processes.45 

Therapeutic Implication: 
Ginger acts to close the "metabolic drain" on tryptophan. By reducing IDO induction, it 
prevents the accumulation of toxic metabolites that drive both immune exhaustion and the 
neurological symptoms ("brain fog," cognitive dysfunction) frequently observed in post-viral 
syndromes. 

4. Modulating Lipid Metabolism: Membrane Stability 
and Energy Shifts 
Viruses are obligate parasites of host lipid metabolism. They require fatty acids and 
cholesterol to build viral envelopes, modify host membranes for entry, and create "replication 
factories" (double-membrane vesicles) within the cell. Disrupting this lipid dependence is a 
powerful strategy for halting viral progression. 

4.1 Licorice (Glycyrrhizin): Lipid Raft Disruption 
Mechanistic Insight: 
Glycyrrhizin, the active triterpene saponin in Licorice (Glycyrrhiza glabra), targets the 
lipid-dependent entry mechanisms of enveloped viruses. It reduces the fluidity of the plasma 
membrane and the viral envelope, thereby inhibiting the fusion of the virus with the host cell.1 
Specifically, Glycyrrhizin has a high affinity for cholesterol and extracts it from lipid 



rafts—specialized, detergent-resistant membrane domains rich in cholesterol and 
sphingolipids that serve as entry portals for viruses like SARS-CoV-2.47 The ACE2 receptor is 
localized within these lipid rafts. By disrupting the structural integrity of these rafts, 
Glycyrrhizin prevents the clustering of receptors and the subsequent viral entry. It stabilizes 
the membrane, making it resistant to the formation of the viral fusion pore required for the 
injection of viral genetic material.46 

4.2 Bitter Melon (Momordica charantia): Lipophagy and AMPK 
Activation 
Mechanistic Insight: 
Bitter Melon contains bioactive compounds, including momordicosides and charantin, that act 
as potent metabolic modulators. It activates AMP-activated protein kinase (AMPK), a central 
sensor of cellular energy.30 AMPK activation inhibits fatty acid synthesis (lipogenesis) by 
phosphorylating and inactivating Acetyl-CoA Carboxylase (ACC), while simultaneously 
promoting fatty acid oxidation (lipolysis). 
Crucially, Bitter Melon induces lipophagy, a specialized form of autophagy that degrades lipid 
droplets.5 Since viruses often utilize lipid droplets as platforms for assembly and replication, 
induction of lipophagy effectively destroys the viral scaffold. By reducing the intracellular pool 
of fatty acids and cholesterol, Bitter Melon deprives the virus of the lipid "building blocks" 
required for envelope formation. Furthermore, Bitter Melon extracts have been shown to 
downregulate the expression of flotillins, marker proteins for lipid rafts, further hindering viral 
entry and assembly.50 

Therapeutic Implication: 
The combination of Licorice and Bitter Melon offers a dual-strike approach: Licorice 
structurally disrupts the sites of viral entry (lipid rafts) at the membrane level, while Bitter 
Melon metabolically depletes the intracellular lipid resources necessary for viral replication 
and assembly. 
4.3 Chitosan: Immunometabolic Reprogramming of Macrophages 
Chitosan, a natural polysaccharide derived from chitin, has emerged as a regulator of 
macrophage immunometabolism. 

Mechanistic Insight: 
Chitosan and its oligosaccharides (COS) modulate the metabolic state of macrophages, 
promoting a shift that favors antiviral activity. Research indicates that low molecular weight 
chitosan stimulates macrophages to increase nitric oxide (NO) secretion and 
pro-inflammatory cytokine production, potentially via the GlcNAc unit, driving them toward an 
M1 phenotype beneficial for acute pathogen clearance.51 However, chitosan also exhibits the 
ability to attenuate neuroinflammation by regulating microglial immunometabolic 
reprogramming via the mTOR signaling pathway, suggesting a context-dependent 
modulation.52 In the context of viral infection, sulfated chitosan derivatives have been 



synthesized to specifically inhibit viral replication by mimicking heparan sulfate, a co-receptor 
for many viruses, thus acting as a decoy.53 

5. Mitigating T-Cell Exhaustion and Restoring 
Mitochondrial Health 
Chronic viral stimulation leads to T-cell exhaustion, a terminal state of differentiation 
characterized by the loss of effector function, high expression of inhibitory receptors (e.g., 
PD-1, TIM-3), and profound mitochondrial dysfunction (loss of membrane potential, inability to 
perform OXPHOS, and reliance on inefficient glycolysis).54 Reversing this state requires 
interventions that specifically target mitochondrial health. 

5.1 Resveratrol: Mitochondrial Biogenesis and SIRT1 Activation 
Mechanistic Insight: 
Resveratrol is a potent allosteric activator of SIRT1 (Sirtuin 1), an NAD+-dependent 
deacetylase that regulates mitochondrial biogenesis via the deacetylation and activation of 
PGC-1$\alpha$ (Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha).56 
In exhausted T cells, PGC-1$\alpha$ expression is often repressed, leading to a collapse in 
mitochondrial mass and respiratory capacity. Resveratrol treatment restores PGC-1$\alpha$ 
activity, thereby enhancing mitochondrial biogenesis and respiratory efficiency.58 
This metabolic rescue reverses the "exhausted" phenotype. Resveratrol-treated T cells show 
reduced expression of the exhaustion marker PD-1 and enhanced effector functions, including 
cytokine production and proliferation.59 It facilitates the transition from a short-lived, highly 
glycolytic effector state to a long-lived, OXPHOS-dependent central memory T-cell (Tcm) 
state. Furthermore, resveratrol helps maintain mitochondrial membrane potential and reduces 
reactive oxygen species (ROS) accumulation, preventing the apoptosis of T cells in the 
rigorous environment of a chronic infection.61 

5.2 Rhodiola rosea & Schisandra chinensis: Adaptogens for ATP 
Recovery 
Rhodiola rosea: 
Known as an adaptogen, Rhodiola directly targets mitochondrial efficiency. Its active 
component, Salidroside, activates the AMPK/SIRT1/PGC-1$\alpha$ axis, promoting 
mitochondrial biogenesis and protecting against oxidative stress.62 Rhodiola enhances the 
synthesis of ATP in mitochondria and stimulates energy recovery in fatigued muscles and 
immune cells.64 Clinical trials have demonstrated its efficacy in treating fatigue and 
exhaustion in post-viral conditions, likely by restoring the cellular energy charge.64 
Schisandra chinensis: 
Schisandra lignans (e.g., Schisandrin B) act as "mitochondrial nutrients." They protect 
mitochondrial structure from oxidative damage and improve ATP production. Schisandra has 



been shown to modulate metabolic reprogramming by inhibiting the Warburg-like metabolism 
in cancer cells (downregulating GLUT1 and lactate generation), a mechanism applicable to 
virus-infected cells.65 Additionally, it supports immune function by modulating the redox 
status of innate immune cells.67 
5.3 Astragalus Polysaccharides (APS): Reversing PD-1 Dependent 
Exhaustion 
Mechanistic Insight: 
Astragalus membranaceus polysaccharides (APS) possess a remarkable ability to inhibit the 
expression of PD-1 on T cells and PD-L1 on tumor or host cells.68 The PD-1/PD-L1 pathway is 
the primary signaling mechanism that induces T-cell exhaustion. By blocking this interaction, 
APS "releases the brake" on T cells, allowing them to regain cytotoxic function. 
Furthermore, APS enhances mitochondrial function by regulating the delicate balance of 
mitochondrial fusion and fission and inhibiting the opening of the mitochondrial permeability 
transition pore (mPTP).70 This preservation of mitochondrial integrity prevents the leakage of 
cytochrome c and subsequent apoptosis, ensuring the longevity of T cells. APS also promotes 
the generation of CD122+CXCR3+PD-1- memory T cells, which are crucial for long-term 
immunity.71 

5.4 Epigallocatechin Gallate (EGCG): Structural Interference and 
Metabolic Modulation 
EGCG, the primary catechin in green tea (Camellia sinensis), acts as a broad-spectrum 
antiviral and immunometabolic modulator. 

Mechanistic Insight: 
EGCG interferes with the viral life cycle at multiple stages. It binds to the viral envelope and 
host receptors (like CD4 and ACE2), blocking attachment and entry.72 Metabolically, EGCG 
inhibits Fatty Acid Synthase (FASN) and glutamate dehydrogenase, disrupting the lipid and 
amino acid metabolism required for viral replication. EGCG has also been shown to reverse 
T-cell exhaustion by reducing the expression of inhibitory receptors (TIM-3) and restoring 
T-cell proliferation.60 It acts synergistically with other agents to reduce viral load and 
inflammation.74 
Table 2: Reversing T-Cell Exhaustion and Mitochondrial Dysfunction 

 

Agent Target Mechanism Outcome 

Resveratrol SIRT1 / PGC-1$\alpha$ Enhances mitochondrial 
biogenesis; reduces PD-1; 
promotes memory T-cell 
formation. 56 



Rhodiola rosea ATP Synthase / AMPK Increases ATP production; 
reduces physical/immune 
fatigue; activates 
PGC-1$\alpha$. 62 

Astragalus (APS) PD-1 / mPTP Blocks PD-1 signaling; 
preserves mitochondrial 
integrity and fusion/fission 
balance. 68 

Schisandra Redox / Glycolysis Inhibits Warburg-like 
metabolism; protects 
mitochondrial structure; 
enhances ATP. 65 

EGCG FASN / Viral Entry Blocks viral entry; inhibits 
fatty acid synthesis; 
reduces T-cell inhibitory 
receptors. 60 

Ketone Bodies (BHB) Mitochondrial Fuel Provides alternative fuel 
source (Acetyl-CoA) for T 
cells, bypassing blocked 
glycolysis. 75 

6. Epigenetic Remodeling and Trained Immunity 
Severe viral infections induce "epigenetic scarring"—stable chemical modifications to DNA 
(methylation) and histones (acetylation/methylation) that lock immune cells into a 
dysfunctional state of tolerance or exhaustion. Reversing this scarring is the frontier of 
treating Long COVID and post-viral syndromes. 

6.1 Curcumin: The Epigenetic Modulator 
Mechanistic Insight: 
Curcumin acts as a potent "epi-drug" or epigenetic modulator. It functions as an inhibitor of 
DNA Methyltransferases (DNMTs), specifically DNMT1, preventing the hypermethylation of 
tumor suppressor and immune-regulatory genes.77 Viral infections often cause 
hypermethylation of key immune genes (e.g., those involved in interferon signaling), effectively 
silencing them. Curcumin can reverse this hypermethylation, reactivating the suppressed 
immune response. 
Additionally, curcumin modulates Histone Deacetylases (HDACs) and Histone 



Acetyltransferases (HATs), restoring the acetylation balance required for active gene 
transcription.77 It also regulates the expression of microRNAs (miRNAs) involved in immune 
regulation, effectively "resetting" the transcriptional landscape of exhausted cells.78 

6.2 Beta-Glucan: Induction of Trained Immunity 
Mechanistic Insight: 
Beta-glucans, polysaccharides found in the cell walls of fungi (like Ganoderma or 
Saccharomyces), induce a phenomenon known as "Trained Immunity" or innate immune 
memory. Upon binding to the Dectin-1 receptor on monocytes and macrophages, 
beta-glucans trigger a signaling cascade (Akt/mTOR/HIF-1$\alpha$) that results in specific 
epigenetic reprogramming.79 
This reprogramming involves the deposition of activating histone marks (specifically 
H3K4me3) at the promoters of genes involved in host defense (e.g., cytokines, metabolic 
enzymes). This epigenetic "priming" allows the innate immune system to respond more 
robustly and rapidly to secondary infections, effectively reversing the state of "innate immune 
amnesia" or paralysis often seen after severe sepsis or severe COVID-19.80 

6.3 Berberine and Sulforaphane: Epigenetic and Nrf2 Regulation 
Berberine: 
Berberine modulates the histone code, specifically decreasing the expression of repressive 
marks like H3K27me3 and H3K9me3, while increasing TET3-mediated DNA demethylation.33 
This activity helps to erase the restrictive epigenetic marks that maintain the Warburg effect 
and stem cell-like properties in pathological cells. 
Sulforaphane: 
Derived from cruciferous vegetables, Sulforaphane is a potent activator of Nrf2 (Nuclear 
factor erythroid 2-related factor 2). Nrf2 is a master transcription factor that regulates 
antioxidant proteins. However, recent evidence shows Nrf2 also acts as a repressor of the 
STING (Stimulator of Interferon Genes) pathway, which drives type I interferon responses.84 
By activating Nrf2, Sulforaphane dampens excessive STING-mediated inflammation while 
restoring redox homeostasis. It induces epigenetic changes (via HDAC inhibition) that restore 
the expression of antioxidant enzymes, countering the oxidative stress that perpetuates 
epigenetic scarring.85 

7. Addressing Organ-Specific Metabolic Scarring: 
Kidney and Liver 
Post-acute sequelae often involve fibrosis and metabolic dysfunction in the kidneys and liver, 
driven by the accumulation of uremic toxins and unresolved inflammation. 

7.1 Salvia miltiorrhiza and Rheum officinale: Clearance of Uremic 



Toxins 
Mechanistic Insight: 
Indoxyl sulfate (IS) is a protein-bound uremic toxin derived from tryptophan metabolism by 
gut bacteria. In kidney disease (and potentially post-viral kidney injury), IS accumulates and 
induces oxidative stress, fibrosis, and endothelial dysfunction.86 
●​ Salvia miltiorrhiza (Danshen): Contains salvianolic acids that have been shown to 

enhance the clearance of indoxyl sulfate and inhibit its production.87 It exerts a protective 
effect on the kidney by suppressing oxidative stress and fibrosis pathways 
(TGF-$\beta$/Smad) activated by IS. 

●​ Rheum officinale (Rhubarb): A key component of the Uremic Clearance Granule (UCG), 
Rhubarb modulates the gut microbiota to reduce the generation of indoxyl sulfate and 
p-cresyl sulfate.89 It also promotes the excretion of these toxins. Emodin, a component of 
Rhubarb, inhibits the NF-$\kappa$B and TGF-$\beta$1 pathways in renal mesangial cells, 
attenuating fibrosis.90 

7.2 SPIKENET (SPK): Reversing Transcriptomic Scarring 
Mechanistic Insight: 
SPIKENET (SPK) is a synthetic 15-amino-acid peptide designed to block the interaction of the 
SARS-CoV-2 Spike protein with ACE2. Beyond viral blocking, SPK has been shown to reverse 
the transcriptomic changes associated with "Long COVID" in the kidney.75 In murine models, 
SPK treatment normalized the expression of genes involved in inflammation, fibrosis, and 
metabolic regulation (including Ngal, Tgf-b1, and Hif1-a), effectively "resetting" the gene 
expression profile of the kidney to a healthy state.92 
7.3 Alpha-Ketoglutarate (AKG): The Metabolic Rescuer 
Mechanistic Insight: 
Alpha-ketoglutarate (AKG) is a key intermediate in the TCA cycle. It acts as a cofactor for TET 
enzymes (DNA demethylases) and Jumonji C-domain-containing histone demethylases 
(JHDMs), linking metabolism directly to epigenetics. Viral infections can deplete AKG, leading 
to epigenetic hypermethylation and metabolic blockages. 
Supplementation with AKG (or herbs that boost it, such as Rhodiola which enhances TCA flux) 
can stabilize HIF-1$\alpha$ (promoting its degradation) and facilitate the epigenetic erasure 
of repressive marks.75 AKG promotes the differentiation of stem cells and enhances the 
integrity of the gut barrier, reducing the translocation of endotoxins that drive systemic 
inflammation.94 Astragalus has also been noted to influence AKG levels by modulating 
enzymes like glutamate dehydrogenase.95 

8. Integrative TCM Protocols: Synergistic Metabolic 
Reprogramming 



Traditional Chinese Medicine (TCM) formulas are engineered to hit multiple metabolic targets 
simultaneously, preventing the virus from adapting to a single blockade and addressing the 
systemic nature of the dysregulation. 

8.1 Lianhua Qingwen: The Multi-Target Inhibitor 
Composition: Lonicera japonica (Honeysuckle), Forsythia suspensa, Ephedra sinica, Prunus 
armeniaca (Bitter Apricot), Rhodiola rosea, Glycyrrhiza uralensis, Rheum palmatum, etc. 

Mechanistic Synergy: 
Lianhua Qingwen (LHQW) exerts a comprehensive effect on immunometabolism: 
1.​ Glycolysis Blockade: Components like Baicalin and Rutin regulate the PI3K/Akt/mTOR 

pathway, blocking the signal for glycolytic reprogramming.1 

2.​ Inflammation Dampening: It inhibits NF-$\kappa$B and TLR4 signaling, dampening the 
cytokine storm (IL-6, TNF-$\alpha$, CCL2) that drives metabolic demand.97 

3.​ Viral Entry Inhibition: Glycyrrhizin and Forsythoside A block ACE2 binding and 
membrane fusion.99 

4.​ Clinical Efficacy: Randomized controlled trials have confirmed its ability to shorten 
symptom duration, improve clinical recovery rates, and reduce the conversion to severe 
cases by stabilizing the host's metabolic and immune state.96 

8.2 Jinhua Qinggan: Targeting the "Damp-Heat" Toxin 
Composition: Lonicera japonica, Gypsum Fibrosum, Ephedra, Scutellaria, Forsythia, Artemisia 
annua, etc. 

Mechanistic Synergy: 
Jinhua Qinggan targets the TCM concept of "Damp-Heat" toxin, which correlates biomedically 
with the hyper-inflammatory, glycolytic state of the cytokine storm. It regulates lipid metabolic 
reprogramming (via PPAR pathways) and significantly reduces the secretion of 
pro-inflammatory cytokines like IL-6, IL-1$\beta$, and IFN-$\gamma$.6 By targeting the 
intersection of lipid metabolism and inflammation, it effectively shortens the duration of viral 
shedding and promotes the absorption of pulmonary exudates.101 

9. Conclusion: The Phytochemical Reset 
The evidence presented in this report underscores that viral pathogens, particularly 
SARS-CoV-2, function as sophisticated metabolic engineers. They reprogram host cells to fuel 
replication and disable immune defenses through four primary mechanisms: (1) The Warburg 
Effect (Hyper-glycolysis), (2) Amino Acid Depletion (Arginine/Tryptophan Starvation), 
(3) Lipid Hijacking, and (4) Epigenetic Scarring. 

This analysis demonstrates that specific phytochemicals possess the precise molecular 



mechanisms required to reverse these alterations, offering a therapeutic strategy that goes 
beyond simple antiviral activity: 

1.​ Metabolic Brakes: Curcumin, Baicalin, Andrographolide, and Berberine effectively 
blockade the mTOR/HIF-1$\alpha$, PDK1, and AMPK pathways, forcing immune cells out 
of the viral-induced glycolytic state and starving the virus of energy. 

2.​ Mitochondrial Rescuers: Resveratrol, Rhodiola, and Astragalus reactivate 
mitochondrial biogenesis, restore ATP production, and repair fusion/fission dynamics, 
which is essential for recovering from post-viral fatigue and T-cell exhaustion. 

3.​ Immune Fuel Restorers: Ginseng and Ginger correct the depletion of Arginine and 
Tryptophan by inhibiting ARG1 and IDO, respectively, preventing T-cell arrest and 
neurotoxicity. 

4.​ Epigenetic Erasers: Curcumin, Berberine, and Beta-glucans act at the chromatin level 
to inhibit DNMTs, modulate histone marks, and induce "trained immunity," thereby 
erasing the scars of exhaustion and building a resilient immune baseline. 

5.​ Toxin Clearance: Salvia miltiorrhiza and Rhubarb facilitate the clearance of metabolic 
toxins like indoxyl sulfate, protecting the kidneys from secondary fibrosis. 

By integrating these agents—either as isolated compounds or within established multi-target 
formulas like Lianhua Qingwen—clinicians and researchers can target the fundamental 
immunometabolic nodes of viral pathogenesis. This approach offers a viable path to restore 
the host's metabolic sovereignty and reverse the deep-seated cellular reprogramming that 
defines chronic viral pathology and Long COVID. 
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